Describe Linear Sequences

Aim: I can describe linear sequences.

Here is a linear sequence: $3,5,7,9$
The step is $\mathbf{2}$
The $1^{\text {st }}$ term is $\mathbf{3}$
The $4^{\text {th }}$ term is 9
The $5^{\text {th }}$ term will be 11
The $10^{\text {th }}$ term will be 21

Complete the following:

1. Here is a linear sequence: $\mathbf{2 , 5}, \mathbf{8}, \mathbf{1 1}$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The $4^{\text {th }}$ term is \qquad
The $5^{\text {th }}$ term will be \qquad
The $10^{\text {th }}$ term will be \qquad
3. Here is a linear sequence: $\mathbf{2 , 5}, \mathbf{8}, \mathbf{1 1}$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The $4^{\text {th }}$ term is \qquad
The $5^{\text {th }}$ term will be \qquad
The $10^{\text {th }}$ term will be \qquad
2. Here is a linear sequence: $\mathbf{4}, \mathbf{6 , 8 , 1 0}$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The $4^{\text {th }}$ term is \qquad
The $5^{\text {th }}$ term will be \qquad
The $10^{\text {th }}$ term will be \qquad
4. Here is a linear sequence: $5,9,13,17$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The $4^{\text {th }}$ term is \qquad
The $5^{\text {th }}$ term will be \qquad
The $10^{\text {th }}$ term will be \qquad
5. Here is a linear sequence: $\mathbf{1 , 6 , 1 1 , 1 6}$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The $4^{\text {th }}$ term is \qquad
The $5^{\text {th }}$ term will be \qquad
The $10^{\text {th }}$ term will be \qquad

Here is a linear sequence: $\mathbf{2 , 5 , 8 , 1 1}$
The step is $\mathbf{3}$
The first term is $\mathbf{2}$
The formula for the first term = the step $\mathbf{- 1}$

Complete the following:
7. Here is a linear sequence: $\mathbf{4 , 6 , 8 , 1 0}$

The step is \qquad
The first term is \qquad
The formula for the first term $=$ \qquad
9. Here is a linear sequence: $\mathbf{3}, \mathbf{8}, \mathbf{1 3}, 18$

The step is \qquad
The first term is \qquad
The formula for the first term = \qquad
10. Here is a linear sequence: $9,15,21,27$

The step is \qquad
The first term is \qquad
The formula for the first term $=$ \qquad
12. Here is a linear sequence: $\mathbf{6}, \mathbf{1 3}, \mathbf{2 0}, \mathbf{2 7}$

The step is \qquad
The first term is \qquad
The formula for the first term $=$ \qquad
13. Here is a linear sequence: $\mathbf{8 , 1 2 , 1 6 , 2 0}$

The step is \qquad
The first term is \qquad
The formula for the first term = \qquad
14. Here is a linear sequence: $\mathbf{7 , 1 6 , 2 5 , 3 4}$

The step is \qquad
The first term is \qquad
The formula for the first term $=$ \qquad
15. Here is a linear sequence: $\mathbf{1 0}, \mathbf{1 7}, \mathbf{2 4}, \mathbf{3 1}$

The step is \qquad
The first term is \qquad
The formula for the first term $=$ \qquad

Describe Linear Sequences Answers

1. The step is $\mathbf{3}$

The 1st term is $\mathbf{2}$
The 4th term is 11
The 5th term will be 14
The 10th term will be 29
2. The step is $\mathbf{2}$

The 1st term is 4
The 4th term is 10
The 5th term will be 12
The 10th term will be $\mathbf{2 2}$
3. The step is $\mathbf{3}$

The 1st term is $\mathbf{2}$
The 4th term is 11
The 5th term will be 14
The 10th term will be 29
4. The step is $\mathbf{4}$

The 1st term is 5
The 4th term is 17
The 5th term will be $\mathbf{2 1}$
The 10th term will be 41
5. The step is $\mathbf{5}$

The 1st term is $\mathbf{1}$
The 4th term is 16
The 5th term will be $\mathbf{2 1}$
The 10th term will be 46
6. The step is $\mathbf{6}$

The 1st term is 7
The 4th term is $\mathbf{2 5}$
The 5th term will be 31
The 10th term will be 61
7. The step is $\mathbf{2}$

The first term is $\mathbf{4}$
The formula for the first term is the step + $\mathbf{2}$
8. The step is $\mathbf{4}$

The first term is 5
The formula for the first
term is the step +1
9. The step is $\mathbf{5}$

The first term is $\mathbf{3}$
The formula for the first
term is the step - $\mathbf{2}$
10. The step is $\mathbf{6}$

The first term is $\mathbf{9}$
The formula for the first term is the step $\mathbf{+} \mathbf{3}$
11. The step is $\mathbf{5}$

The first term is $\mathbf{2}$
The formula for the first term is the step - 3
12. The step is $\mathbf{7}$

The first term is $\mathbf{6}$
The formula for the first term is the step - 1
13. The step is $\mathbf{4}$

The first term is $\mathbf{4}$
The formula for the first term is the step + 4
14. The step is $\mathbf{9}$

The first term is $\mathbf{7}$
The formula for the first term is the step - $\mathbf{2}$
15. The step is $\mathbf{7}$

The first term is 10
The formula for the first term is the step + $\mathbf{3}$

Describe Linear Sequences

Aim: I can describe linear sequences.

Here is a linear sequence: $\mathbf{3 , 8 , 1 3 , 1 8}$
The step is 5
The $1^{\text {st }}$ term is $\mathbf{3}$
The formula for the first term = step-2
The $\mathrm{n}^{\text {th }}$ term $=\mathbf{5 n - 2}$
The $16^{\text {th }}$ term $=78(5 \times 16)-2=78$

Complete the following:

1. Here is a linear sequence: $7,11,15,19$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The formula for the first term $=$ \qquad
The $\mathrm{n}^{\text {th }}$ term $=$ \qquad
The $12^{\text {th }}$ term $=$ \qquad
3. Here is a linear sequence: $9,11,13,15$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The formula for the first term $=$ \qquad
The $\mathrm{n}^{\text {th }}$ term $=$ \qquad
The $15^{\text {th }}$ term $=$ \qquad
2. Here is a linear sequence: $\mathbf{8}, 11,14,17$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The formula for the first term = \qquad
The $\mathrm{n}^{\text {th }}$ term $=$ \qquad
The $12^{\text {th }}$ term $=$ \qquad
4. Here is a linear sequence: $\mathbf{1}, \mathbf{7}, 13,19$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The formula for the first term = \qquad
The $\mathrm{n}^{\text {th }}$ term $=$ \qquad
The $11^{\text {th }}$ term $=$ \qquad
5. Here is a linear sequence: $\mathbf{4}, \mathbf{1 1}, \mathbf{1 8}, \mathbf{2 5}$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The formula for the first term $=$ \qquad
6. Here is a linear sequence: $\mathbf{2}, \mathbf{1 1}, \mathbf{2 0}, \mathbf{2 9}$

The step is \qquad
The $1^{\text {st }}$ term is \qquad
The formula for the first term = \qquad
The $\mathrm{n}^{\text {th }}$ term $=$ \qquad The $\mathrm{n}^{\text {th }}$ term $=$ \qquad
The $9^{\text {th }}$ term $=$ \qquad The $14^{\text {th }}$ term $=$ \qquad

For your own linear sequences, complete the following:
7. Write a linear sequence:

The step is \qquad
The $1^{\text {st }}$ term $=$ \qquad
The formula for the first term $=$ \qquad
The $\mathrm{n}^{\text {th }}$ term $=$ \qquad
The $14^{\text {th }}$ term $=$ \qquad
9. Write a linear sequence: \qquad
The step is \qquad
The $1^{\text {st }}$ term $=$ \qquad
The formula for the first term $=$ \qquad
The $\mathrm{n}^{\text {th }}$ term $=$ \qquad
The $18^{\text {th }}$ term $=$ \qquad
10
10. Write a linear sequence: \qquad
The step is \qquad
The $1^{\text {st }}$ term $=$ \qquad
The formula for the first term = \qquad
The $\mathrm{n}^{\text {th }}$ term $=$ \qquad
The \qquad ${ }^{\text {th }}$ term $=$
12. Write a linear sequence: \qquad
The step is \qquad
The $1^{\text {st }}$ term $=$ \qquad
The formula for the first term = \qquad
The $\mathrm{n}^{\text {th }}$ term $=$ \qquad
The ____t ${ }^{\text {th }}$ term $=$ \qquad

Describe Linear Sequences Answers

	The step is 4
	The 1st term is 7
	The formula for the first term is step + 3
	The nth term $=\mathbf{4 n} \mathbf{+ 3}$
	The 12th term = 51
	The step is $\mathbf{3}$
	The 1st term is $\mathbf{8}$
	The formula for the first term is step + 5
	The nth term $=\mathbf{3 n + 5}$
	The 12th term $=41$
	The step is $\mathbf{2}$
	The 1st term is 9
	The formula for the first term is step + 7
	The nth term $=\mathbf{2 n + 7}$
	The 15th term $=37$

1. The step is $\mathbf{4}$

The 1st term is $\mathbf{7}$
The formula for the first term is step + $\mathbf{3}$
The nth term $=\mathbf{4 n} \mathbf{+ 3}$
The 12 th term $=51$
2. The step is $\mathbf{3}$

The 1st term is $\mathbf{8}$
The formula for the first term is step + 5
The nth term $=\mathbf{3 n} \mathbf{+ 5}$
The 12th term $=41$
3. The step is $\mathbf{2}$

The 1st term is 9
The formula for the first term is step + 7
The nth term $=\mathbf{2 n + 7}$
The 15 th term $=\mathbf{3 7}$
4. The step is $\mathbf{6}$

The 1st term is 1
The formula for the first term is step-5
The nth term = 6n-5
The 11th term $=\mathbf{6 1}$
5. The step is $\mathbf{7}$

The 1st term is $\mathbf{4}$
The formula for the first term is step-3
The nth term $=\mathbf{7 n}-\mathbf{3}$
The 9th term $=\mathbf{6 0}$
6. The step is 9

The 1st term is $\mathbf{2}$
The formula for the first term is step - $\mathbf{7}$
The nth term = 9n-7
The 14th term = 119

Questions 7-12.
Accept any reasonable answer.

Describe Linear Sequences

Aim: I can describe linear sequences.
Here is a linear sequence: 4, 7, 10, 13
The $5^{\text {th }}$ term is $\mathbf{1 6}$
The $\mathrm{n}^{\text {th }}$ term is $\mathbf{3 n + 1}$
The $16^{\text {th }}$ term is 49

Complete the following:

1. Here is a linear sequence: $\mathbf{1 , 6 , 1 1 , 1 6}$

The $5^{\text {th }}$ term is \qquad
The $\mathrm{n}^{\text {th }}$ term is \qquad
The $12^{\text {th }}$ term is \qquad
3. Here is a linear sequence: $\mathbf{2 , 5}, \mathbf{8}, \mathbf{1 1}$

The $5^{\text {th }}$ term is \qquad
The $\mathrm{n}^{\text {th }}$ term is \qquad
The $16^{\text {th }}$ term is \qquad
5. Here is a linear sequence: $\mathbf{4}, \mathbf{1 1}, \mathbf{1 8}, \mathbf{2 5}$

The $5^{\text {th }}$ term is \qquad
The $\mathrm{n}^{\text {th }}$ term is \qquad
The $14^{\text {th }}$ term is \qquad
7. Here is a linear sequence: $\mathbf{2 , 8}, \mathbf{1 4}, \mathbf{2 0}$

The $5^{\text {th }}$ term is \qquad
The $\mathrm{n}^{\text {th }}$ term is \qquad
The $13^{\text {th }}$ term is \qquad
2. Here is a linear sequence: $\mathbf{7}, 11,15,19$

The $5^{\text {th }}$ term is \qquad
The $\mathrm{n}^{\text {th }}$ term is \qquad
The $18^{\text {th }}$ term is \qquad
4. Here is a linear sequence: $4,13,22,31$

The $5^{\text {th }}$ term is \qquad
The $\mathrm{n}^{\text {th }}$ term is \qquad
The $11^{\text {th }}$ term is \qquad
6. Here is a linear sequence: $11,19,27,35$

The $5^{\text {th }}$ term is \qquad
The $\mathrm{n}^{\text {th }}$ term is \qquad
The $15^{\text {th }}$ term is \qquad
8. Here is a linear sequence: $\mathbf{1 2}, \mathbf{1 7}, \mathbf{2 2}, 27$

The $5^{\text {th }}$ term is \qquad
The $\mathrm{n}^{\text {th }}$ term is \qquad
The $19^{\text {th }}$ term is \qquad
9. Here is a linear sequence: $5,16,27,38$

The $5^{\text {th }}$ term is \qquad
The $\mathrm{n}^{\text {th }}$ term is \qquad
The $12^{\text {th }}$ term is \qquad
10. Here is a linear sequence: $\mathbf{1 7}, \mathbf{2 9}, 41,53$ The $5^{\text {th }}$ term is \qquad The $\mathrm{n}^{\text {th }}$ term is \qquad The $15^{\text {th }}$ term is \qquad

Challenge

Write an explanation, with an example, of how to turn a linear sequence into an expression for the $\mathrm{n}^{\text {th }}$ term.

Compare your answer with a partner. How can you improve your explanation?

Describe Linear Sequences Answers

1. The 5th term is $\mathbf{2 1}$

The nth term is $\mathbf{5 n - 4}$
The 12th term is $\mathbf{5 6}$
2. The 5th term is $\mathbf{2 3}$

The nth term is $\mathbf{4 n + 3}$
The 18th term is 75
3. The 5th term is $\mathbf{1 4}$

The nth term is $\mathbf{3 n - 1}$
The 16th term is 47
4. The 5 th term is $\mathbf{4 0}$

The nth term is $\mathbf{9 n - 5}$
The 11th term is 94
5. The 5th term is $\mathbf{3 2}$

The nth term is $\mathbf{7 n - 3}$
The 14th term is 95
6. The 5 th term is $\mathbf{4 3}$

The nth term is $\mathbf{8 n + 3}$
The 15th term is $\mathbf{1 2 3}$
7. The 5th term is $\mathbf{2 6}$

The nth term is $\mathbf{6 n - 4}$
The 13th term is $\mathbf{7 4}$
8. The 5 th term is $\mathbf{3 2}$

The nth term is $\mathbf{5 n + 7}$
The 19th term is $\mathbf{1 0 2}$
9. The 5th term is 49

The nth term is $11 \mathrm{n}-6$
The 12th term is $\mathbf{1 2 6}$
10. The 5th term is $\mathbf{6 5}$

The nth term is $\mathbf{1 2 n + 5}$
The 15 th term is $\mathbf{1 8 5}$

