Maths Week 3

Starters - try doing one every day:
These starters are objectives that you have learnt in Year 5.

- Revise times tables (there is a 2do set on Purple Mash)
- Write down the first 10 cube numbers.
- Convert the following times to a 24 hour clock:

6:20am, 11:48pm, 9:15am, 1:35pm

- Multiply 234 by 10, 100, 1000 and 10,000.
- Divide 52930 by 10, 100, 1000 and 10,000.

Week 1 of 'Shape' (rectangles)

Task 1: L.O. To understand the properties of rectangles.

What can you tell me about this shape?

Use what you know to reason from known angles, such as 90 degrees in the corner of a rectangle.

Knowledge:

A right angle is 90 degrees. Half a right angle is 45 degrees.

Where are the parallel lines?

Where are the perpendicular lines?

How is a square a special rectangle?

What is the same?
What is different?

Task 1

Using what we know we need to work out the angles. Calculate the size of the angles in each shape (protractor not needed)

Mastery:
Here's a square

Use the square to work out the missing lengths.

Use the square to calculate the missing lengths and angles.

Knowledge: What does bisect mean?
"Bisect" means to divide into two equal parts.

Bisect a Shape

We can also bisect some shapes. Here a kite is bisected by a dashed line:

You can bisect lines, angles, and more.
The dividing line is called the "bisector"

Task 2

Do the diagonals of rectangles always bisect?

Draw the diagonals onto the rectangles. Is there more than 1 diagonal?

Knowledge: What is a quadrilateral?

Quadrilaterals

A shape with:

- four straight sides
- four angles - equal to 360 degrees
- four vertices (corners).
- Quad means four.
- Lateral means sides.

Interior Angles

Interior angles: An interior angle (or internal angle) is an angle
formed by two sides of a simple polygon that share an endpoint

Interior angles of a quadrilateral always equal 360 degrees

Task 3 - What quadrilateral will I make?

Talk task:
Join the adjacent corners.
What is my shape?
List the properties.

Name the Quadrilaterals

Task 4 - L.O. To use the properties of rectangles to deduce facts. 6 cm

What is the perimeter of this rectangle?
How could you work it out?
Knowledge: The perimeter is the distance around the edge of a shape.

How to use the formula:
$2 l+2 b$
$8 \mathrm{~cm}+8 \mathrm{~cm}+7 \mathrm{~cm}+7 \mathrm{~cm}=30 \mathrm{~cm}$

Find the perimeter

Challenge

- The perimeter of the rectangle is 45 cm .

Find the length of the rectangle.

Task 5 - Use what you have just learnt to work out the lengths/perimeter of other polygons.

Triangle

Heptagon

Quadriluteral

Octagen

Pentagon

Nonagon

Hexagon

Decagon

Challenge

How could we work this out?
Talk to your partner.

If the $P=12 \mathrm{~cm}$, what could the dimensions be?

How could we wark this out?

Let's wark systematically.

How many other options using whole numbers?
What if you worked to 1 dp ?

Task 1

Task 2

Do the diagonals of rectangles always bisect?

Task 3

Join the adjacent corners. What is my shape?

Kite

-the diagonals of a rectangle are equal in length to each other and they bisect each other at their point of intersection

Name the Quadrilaterals

Task 4

$A=18 \mathrm{~cm}$
$B=24 \mathrm{~cm}$
$C=28 \mathrm{~cm}$
$D=20 \mathrm{~cm}$
$E=30 \mathrm{~cm}$

Challenge

$2 \times 4.9=9.8 \mathrm{~cm}$
$45 \mathrm{~cm}-9.8 \mathrm{~cm}=35.2 \mathrm{~cm}$
$35.2 / 2=17.6 \mathrm{~cm}$
Length $=17.6 \mathrm{~cm}$

- The perimeter of the rectangle is 45 cm .

Find the length of the rectangle.

Task 5

Triangle perimeter $=19.2 \mathrm{~mm}$
Quadrilateral length $=4.5 \mathrm{~cm}$
Pentagon perimeter $=32.5 \mathrm{~mm}$
Hexagon length $=12 \mathrm{~cm}$
Heptagon length $=7 \mathrm{~cm}$
Octagon length $=8 \mathrm{~cm}$
Nonagon length $=8 \mathrm{~cm}$
Decagon length $=11 \mathrm{~m}$

Challenge

How many other options using whole numbers?
3 cm

How could we wark this out?

\square| If the $P=12 \mathrm{~cm}$, what |
| :--- |
| could the dimensions be? |

Let's work systematically.
What if you worked to 1dp?
$L=5.9 \quad W=0.1$
$5.8 \quad 0.2$
5.70 .3
$5.6 \quad 0.4$
5.50 .5
5.40 .6
$5.3 \quad 0.7$
5.20 .8
$5.1 \quad 0.9$
5.01 .0
continue the pattern...
$\mathrm{L}=4.9 \quad \mathrm{~W}=1.1$

