Vocabulary: number, numeral, digit (one-digit, two-digit), amount, more than, fewer than, less than, pattern, count back, subtract, minus, equals, part, whole.

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: |
| Daily routines and mathematical discussions <br> "We usually have 4 children in our reading group, but Tom is away, how many children do we have now" <br> Counting backwards throughout the day - can you put your lids on your pens before I finish counting back from 5? 5, 4, 3, 2, 1, 0 ..." <br> "Yesterday we had 4 hats in lost property, today we have 2, that is less/fewer than yesterday." | Number talk <br> Plan number talk opportunities and take advantage of incidental opportunities for number talk when looking at books and images. | Children record their mathematical knowledge and skills using pictorial representations, part, whole model, drawings, jottings and mathematical statements/language. <br> Encourage children to draw signs in the air. |
| Taking amounts away/discussing the difference <br> "Here is my 10 -frame and this is yours, who has less?" | "There were 5 fish and 2 swam away, how many were left?" <br> Jottings |  |


| "I have 5 bears in total, I am taking 2 away, how many are left?" <br> Can also use cubes as concrete objects. | OOOQQ <br> Ten frame jottings <br> OOOQQ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One less <br> "I had 4 children on my carpet but 1 has gone outside, how many children are left" <br> "I have 3 special pens, but one has run out, so now I have one less than 3 .... how many do I have left? | When singing songs, drawing attention to the subtraction happening. 5 green bottles hanging on the wall, "one green bottle fell, how many green bottles are hanging on the wall now?" <br> Other song ideas: 5/10 little monkeys, 5/10 little ducks. <br> Numeral track to show one less. |  |  |  |  |  |  |  |  |  | Begin to explore with own symbols and marks (jottings) Children to be given a mathematical concept and asked to make marks to represent this (mathematical jottings) Yusuf had 5 apples; he gave 2 to <br> Alex. |

Develop a deep understanding of number to 10 , including the composition of each number with the use of games
compose and decompose numbers to 10 using skittles. "I had 10 skittles, 2 got knocked down, how many are left standing?"

Other ideas including biscuits, fruit.

Use pictorial representations to show that 2 parts make a whole and refer to this method when decomposing numbers.

$$
\begin{aligned}
& 5-2=3 \\
& 5-3=2
\end{aligned}
$$



Recording scores using marks and beginning to include the use of numerals (Provision and small groups).

## Encourage

children to keep scores of their games by using
marks and symbols and eventually including numerals in this.

## YEAR 1

## Subtraction

Vocabulary: Subtraction; subtract; take away; minus; distance between; difference between; more than; fewer than; minus; less than; most; least.

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: |
| Subtract numbers within 10 <br> Counting back: <br> 10-3=7 <br> Using cubes, objects and tens frames. <br> Rekenrek: $\qquad$ <br> Numicon: | Subtract numbers within 10 <br> Counting back: <br> $10-3=7$ <br> - ○○ <br> - 豈察 $8-3=5$ | Mental facts to 10 <br> Counting back: <br> Counting back in ones: <br> $8-3=5$ <br> $8,7,6,5$ <br> One and two less: <br> Of numbers up to 10 . <br> 8-1 = 7 (consecutive numbers) <br> 6-2 $=4$ (Consecutive odd or even numbers) |
| Counting on: (finding the difference) 10-6 = <br> Rekenrek: | Counting on: (finding the difference) $10-6=4$ <br> Diennes: <br> $8-3=5$ <br> $00000 Q 0$ | Counting on: $9-7=2$ <br> Hold 7 in your head and count on until 9. The difference is 2 . <br> Number facts/fact families <br> To 10 and 20: $\begin{array}{ll} 10-2=8 & 20-2=18 \\ 10-8=2 & 20-18=2 \\ 2+8=10 & 2+18=20 \\ 8+2=10 & 18+2=20 \end{array}$ |

## Subtract numbers within 20

As above but include:
Numicon:

## $20-7=13$



Rekenrek:
0000000000000

## Dienes:



## Tens frames showing partitioning:

$12-5=7$


Subtract numbers within 20
As above plus:

## Dienes jottings:

15-3=12


15-6=9


One ten $=10$ ones

Partitioning:
$12-5=7$


Extending to partitioning 5 into 2 and 3 then -2 and -3 .

## Mental facts to 20 <br> Using known facts and place value <br> If 6-4 = 2 <br> Then 16-4 = 12

## Counting back:

## Counting back in ones

$16-5=11$
$16,15,14,13,12,11$

## Counting on:

(see number line above)
15-11=4
Hold 11 in your head and count on until 15.
The difference is 4 .

Partitioning: (Bridging through 10)
11-4
$11-1=10$
$10-3=7$

## Missing Number/Inverse:

$8+\square=19$
$+12=20$

No formal written layout. Children record their maths using pictorial representations, number lines and mathematical statements.

## YEAR 2

## Subtraction

Subtraction, subtract, minus, whole, part, count back, left, missing part, equals, same as, number family, number sentence, calculation, number, numeral, digit (one-digit, two-digit), odd, even, pattern, tens, ones, jottings, inverse (see previous year groups)

\section*{Vocabulary: <br> | Concrete |
| :--- |
| Children need to be secure in |
| Subtracting 2 digit numbers and $n$ <br> $\frac{10}{N}$ <br> No exchanging (diennes) <br> $56-4=52$ <br> Tens Ones <br> $\square$ $\square \square$ <br>  $\square$ |}

Leading onto a 2 -digit number subtracting tens (5630)

Exchanging (diennes)


Pictorial

## Abstract

| Subtracting 2 digit numbers and multiples of 1 and |  |  |  |
| :---: | :---: | :---: | :---: |
| $\underline{10}$ |  |  |  |
| Written |  |  |  |
| No exchanging |  |  |  |
| Subtracting ones |  | Subtracting tens |  |
| Tens | Ones | Tens | Ones |
| 5 | 6 | 5 | 6 |
| - | 4 | -3 | 0 |
| 5 | 2 | 2 | 6 |

This written method is only shown alongside the pictorial representation.

No written method for exchanging.


## Mental Methods

| Number families: | Partitioning: |
| :---: | :---: |
| Using knowledge of inverse: | 45-23 |
| If $23+31=54$ | $40-20=20 ; 5-3=2 ; 20+2=22$ |
| Then 54-23-31 |  |
|  | Adjusting: |
| Counting on/up: | 36-9+1 to both sides to give: |
| (for small differences between numbers) | 37-10 = 27 |
| 34-28=6 | 45-19+1 to both sides to give: |
| $28+2=30$ | 46-20 $=26$ |
| $30+4=34$ |  |
| $2+4=6$ | Using known facts and place value: |
|  | 68-5 |
| Counting back: | If 8-5 $=3$ then 68-5 $=63$ |
| $56-17=39$ | 70-30 |
| $56-10=46$ | If $7-3=4$ then 70-30 $=40$ |
| $46-6=40$ |  |
| 40-1 $=39$ | Inverse/missing number: |
| Equivalent differences: | $41+\ldots=56$ |
| $56-39$ is the same as 57-40 $=17$ | $\ldots+13=47$ |

## YEAR 3

## Subtraction

Vocabulary: Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange (see previous years groups)



## Mental

```
Counting back:
164-40=124
(counting back in tens: 154, 144, 134, 124)
356-23
(356 - 20 then -3)
375-47
(375-40, - 5 then - 2)
Counting on (finding the difference)
For numbers close together
102-97=5
97 + 3 = 100,100 + 2 = 102
Then 3 + 2=5
325-280=45
280+20=300,300 + 25=325
Then 20 + 25=45
```


## YEAR 4

## Subtraction

Vocabulary: difference, minus, subtract, take way, less than; subtrahend - minuend = difference (see previous year groups)



## YEAR 5

## Subtraction

Vocabulary: difference, minus, subtract, take way, less than; subtrahend - minuend = difference (see previous year groups)


Exchanging at different and several points. No place value digits for 6-digit numbers available.

Subtracting decimals (up to 2 decimal places) $36.45-12.23=24.22$


Start with no exchanging then build up to exchanging at different points using:
1 ten = 10 ones; 1 one = 10 tenths; 1 tenth = 10 hundredths.

## Pictorial

Subtract whole numbers with more than 4 digits.

## Counting back using a number line

Building on from year 4 using the number line (see year 4)

## Counting on using a number line

Where the numbers in the calculation allow for easy adding of the resulting jumps.

Subtracting decimals (up to 2 decimal places)
Counting back:
19.2-2.7 = 16.5


## Counting on:



## Abstract

Written
Subtract whole numbers with more than 4 digits.

| No exchanging Exchanging <br> 51  <br> 54543 36251 <br> -21322 $-\underline{15420}$ <br> 33221 20831 |
| :--- |


| No exchanging | Exchanging |
| :---: | :---: |
|  | 81 |
| 36.45 | 19.2 |
| $-\frac{12.23}{24.22}$ | -2.7 |


| Subtracting negative numbers Using real life objects: | Subtracting negative numbers $4-6=-2$ <br> Number line counting backwards in single increments from 4 to -2. <br> Number line counting backwards: first to 0 and then the remaining "jumps" back to -2. | Develops in to a mental method no written method. |
| :---: | :---: | :---: |
| Mental Methods: |  |  |
| Counting on: <br> 7.2-6.8 <br> $6.8+0.2=7$ <br> $7+0.2=7.2$ then $0.2+0.2=0.4$ <br> Counting back: <br> 7.87-2.03 <br> (partition 2.03 then $7.87-2=5.87$ $5.87-0.03=5.84$ <br> Adjusting: <br> 23 345-1 999 (+ 1 to both numbers) <br> $23346-2000=21346$ <br> 8.3-1.9 (+ 0.1 to both numbers) <br> $8.4-2=6.4$ <br> 14.56-0.19 (+ 0.01 to both numbers) | Using known facts and <br> If $16-8=8$ then: <br> $1.6-0.8=0.8$ <br> $0.16-0.08=0.08$ <br> Partitioning: <br> No exchanging $34567-12354$ <br> Subtracting a power $23453-10000=13$ $45321-1000=443$ <br> Children recognise wh | place value: <br> f 10 <br> 53 <br> h column will change. |


| YEAR 6 | Subtraction |  |
| :---: | :---: | :---: |
| Vocabulary: difference, minus, subtract, take way, less than; subtrahend - minuend = difference |  |  |
| Concrete | Pictorial | Abstract |
| Subtract larger whole numbers (exchanging at different points) <br> No place value counters for larger numbers. Revisit previous years' addition calculation policies. | Subtract larger whole numbers (exchanging at different points) <br> Number lines from previous year groups are used if needed. | Subtract larger whole numbers (exchanging at different points) <br> M HTh TTh Th H TO $\begin{array}{rrrrrrr}  & 4 & 1 & & 1 & 1 & \\ 6 & 5 & 3 & 7 & 2 & 0 & 6 \\ -1 & 3 & 7 & 4 & 0 & 2 & 3 \\ \hline 5 & 1 & 6 & 3 & 1 & 8 & 3 \\ \hline \end{array}$ |
| Subtracting decimals up to 3 decimal places. (exchanging at different points) (including decimals with different numbers of decimal places) | Subtracting decimals up to 3 decimal places. <br> (exchanging at different points) (including decimals with different numbers of decimal places) <br> See previous addition policies if needed for jottings using a number line. | Subtracting decimals with up to 3 decimal places <br> (exchanging at different points) <br> (including decimals with different numbers of decimal places) $\begin{array}{r} O .+h t h \\ 3141 \\ 3.453 \\ -\quad 1.364 \\ \hline 2.089 \end{array}$ |


| Subtracting negative numbers In real life contexts | Subtracting negative numbers $-15+20=5$ <br> (could go up in 1s first) | Subtracting negative numbers Develops into a mental method no written method. |
| :---: | :---: | :---: |
| Mental |  |  |
| Counting on: $\begin{aligned} & 6.14-5.76 \\ & 5.76+0.24=6 \\ & 6+0.14=6.14 \\ & 0.24+0.14=0.38 \end{aligned}$ <br> Counting back: $7.87-2.03$ <br> Partition the second number and counting back. $\begin{aligned} & 7.87-2=5.87 \\ & 5.87-0.3=5.84 \end{aligned}$ <br> Adjusting: <br> 34 256-14999 (+ 1 to both numbers) <br> 6.73-0.99 (+ 1 to both numbers) | Using known f $\begin{aligned} & 1.63-0.8 \\ & 16-8=8 \text { so } 1.6 \end{aligned}$ <br> Partitioning: <br> No exchanging $456765-235$ <br> Subtracting a 163 453-20,000 <br> 275 321-1,000 <br> (children recog <br> *Not always m be included for | place value: $3=0.83$ <br> 21522 <br> multiple of 10 <br> ch column will change) <br> but subtractions involving missing numbers must approach (e.g., mental/ written) |

